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Context andmotivation The case for real closed rings I

Let
Ccsa :=

⋃
n∈N0

{f : Rn −→ R | f is continuous andZ-semi-algebraic},

and if A is any set, then letOA :=
⋃
n∈N0

{f : An −→ A | f is a function}.

Definition (2.1 in [Tre07])
A ring A is real closed if there exists a functionΦ : Ccsa −→ OA such that:

1. If n ∈ N0 and f ∈ Ccsa is n-ary, thenΦ(f ) is n-ary.

2. If n ∈ N and f ∈ Ccsa is the projectionRn −→ R onto the ith-coordinate, thenΦ(f ) is the
projection An −→ A onto the ith-coordinate.

3. Ifm ∈ N, n ∈ N0, f ∈ Ccsa ism-ary, and g1, . . . , gm ∈ Ccsa are n-ary, then

Φ(f ◦ (g1, . . . , gm)) = Φ(f ) ◦ (Φ(g1), . . . , Φ(gm)).

4. Φ(+R) = +A,Φ(·R) = ·A, andΦ(−R) = −A,Φ(0R) = 0A, andΦ(1R) = 1A.

If A is a real closed ring, then the setΦ(Ccsa) = {Φ(f ) | f ∈ Ccsa} is a real closed structure
for A.

A ring is real closed in the sense above if and only if it is a real closed ring in the sense of Niels
Schwartz (this fact is implicit in [SM99], Chapters 7 and 12).
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Context andmotivation The case for real closed rings II

Theorem (2.12 (c) in [Tre07])
Let A be a real closed ring. Then A has a unique real closed structure, that is, there exists a unique function
ΦA : Ccsa −→ OA satisfying all items 1 - 4 from the definition of the previous slide.

Proposition (2.16 in [Tre07])
Let F : A −→ B be a ring homomorphism of real closed rings. Then F preserves the real closed structure,
that is, for every n ∈ N0 and every n-ary function f ∈ Ccsa the equality

F(ΦA(f )(a1, . . . , an)) = ΦB(f )(F(a1), . . . , F(an))

holds.

Question: Do the any of the above statements also hold forC∞-rings?
Partial answer:The second statement is false forC∞-rings as there exists a counterexample; this
is Remark 4.40 in [CR13]. I don’t know if the first statement holds forC∞-rings.
The counterexample was constructed by Reichard in [Rei75] to answer a similar question posed
byMalgrange (Remark 2.4 in [Mal66]) in the context of differentiable algebras. This
counterexample is also mentioned in the context ofC∞-differentiable spaces, see the line above
Example 2.37 in [NGSdS03].
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The counterexample Choice of data

Fix the following notation:

• R{x} ⊆ R[[x]] is the subring of convergent power series in the variable x overR.

• C∞(R)0 is the ring of germs of smooth functionsR −→ R at 0.

• Cω(R)0 ⊆ C∞(R)0 is the subring of germs of analytic functionsR −→ R at 0.

• T : C∞(R)0 −↠ R[[x]] is the Taylor series map at 0, that is, if [f ] is the germ at 0 of

f ∈ C∞(R), then T([f ]) :=
∑∞

n=0
f (n)(x)

n! xn.

Fact (Pages 18 and 31 in [MR91])
The ringsR[[x]] and C∞(R)0 areC∞-rings (R[[x]],Φ1) and (C∞(R)0, Φ2). In particular:

• If f : R −→ R is a smooth function and a =
∑∞

n=0 anxn ∈ R[[x]], then

Φ1(f )(a) =

∞∑
n=0

f (n)(a0)
n!

(a− a0)n.

• If f : R −→ R is a smooth function and [g] ∈ C∞(R)0, then

Φ2(f )([g]) = [f ◦ g].

• T preserves theC∞-structure, that is, T is aC∞-morphism T : (C∞(R)0, Φ2) −↠ (R[[x]], Φ1).
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The counterexample Reichard’s theorem

Theorem (Satz 2 in [Rei75])
There exists anR-algebramorphism F : R[[x]] −→ C∞(R)0 such that:

1. F is anR-algebra cross-section of T, that is, T ◦ F : R[[x]] −→ R[[x]] is the identity map.

2. F restricts to the canonicalR-algebra isomorphism F0 : R{x}
∼=−→ Cω(R)0. In particular,

F(x) = [idR], where idR is the identity mapR −→ R.

Sketch of proof
DefineM to be the set of pairs (A, f ) such that:

• A is anR-algebra withR{x} ⊆ A ⊆ R[[x]].

• f : A −→ C∞(R)0 is anR-algebra morphism.

• f restricts to the canonical isomorphism F0 : R{x}
∼=−→ Cω(R)0.

Define a partial order⊑ onM by setting (A, f ) ⊑ (B, g) def⇐⇒ A ⊆ B and g↾A = f . The setM is
non-empty since (R{x}, F0) ∈ M, therefore the poset (M, ⊑) has a maximal element (A, F) by
Zorn’s lemma. Assume for contradiction that A ̸= R[[x]]. Choose b ∈ R[[x]] \ A. Then there
exists anR-algebra morphism G : A[b] −→ C∞(R)0 which extends F, yielding a contradiction
to maximality of (A, F) in (M,⊑). □
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The counterexample Reichard’sR-algebramorphism F is not a C∞-morphism
Observation (cf. Remark 4.40 in [CR13])
TheR-algebramorphism F : R[[x]] −→ C∞(R)0 fromReichard’s theorem does not preserve the
C∞-structure, that it, it is not aC∞-morphism F : (R[[x]], Φ1) −→ (C∞(R)0, Φ2).

Proof

Let f : R −→ R be any smooth function which is flat at 0 (that is, such that f (n)(0) = 0 for all
n ∈ N0) and such that [f ] ̸= [0] in C∞(R)0. An example of such function is the one defined by
f (0) = 0 and f (x) := e

−1
x2 if x ̸= 0.

Let idR be the identity mapR −→ R. On the one hand, F(x) = [idR] by item 2 in Reichard’s
theorem, therefore

Φ2(f )(F(x)) = Φ2(f )([idR]) = [f ◦ idR] = [f ].

On the other hand,Φ1(f )(x) =
∑∞

n=0
f (n)(0)

n! (x− 0)n = 0 since f is flat at 0, therefore

F(Φ1(f )(x)) = F(0) = [0],

and thus
F(Φ1(f )(x)) ̸= Φ2(f )(F(x))

by choice of f .
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Follow-up questions

Question: Does everyC∞-ring have a uniqueC∞-structure?
LetC∞-RING be the category ofC∞-rings withC∞-morphisms andR-Alg be the category of
R-algebras withR-algebra morphisms. The previous counterexample implies that the forgetful
functor U : C∞-RING −→ R-Alg is not full.

However, there exist full subcategoriesC ⊆ C∞-RING such that the restriction of U toC is a
full functor. For example, one can takeC to be the full subcategory ofC∞-RINGwhose objects
are either of the following:

• C∞(M)whereM is a smooth manifold (Theorem 2.8 and Corollary 3.7 in [MR91]).

• Formal algebras, that is, factor rings of formal power series with finitely many variables over
R (Proposition 3.20 in [MR91]).

• Weil algebras (Corollary 3.19 in [MR91]).

• Near-point determinedC∞-rings (Definition 4.1 (b) in [MR91] and Proposition 8 in [Bor15]).
Question: Is there a largest full subcategoryC ⊆ C∞-RING such that the restriction of U toC
is a full functor? If not, is there an intrinsic characterization of the categoriesC that satisfy this
property?
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Proof ingredients C∞-fields are real closed
Theorem (Theorem 2.10 in [MR86] and page 42 in [MR91])
(The underlying field of) AnyC∞-field K is a real closed field.
Sketch of proof
The proof heavily relies on the representation ofC∞-rings as quotients by ideals of filtered
colimits ofC∞-rings of the form C∞(Rn). In particular, K ∼= C∞(RE)/I asC∞-rings for
some set E and somemaximal ideal I ⊆ C∞(RE), where

C∞(RE) := lim
→

{C∞(RD) | D ⊆ E finite }.

Maximality of I implies that f/I > 0 def⇐⇒ ∃g ∈ I, ∀x ∈ Z(g), f (x) > 0 is a total order on
C∞(RE)/I turning it into a totally ordered field. Smooth Tietze implies that that positive
elements in this total order are squares.

Let p(t) ∈ K[t] be a monic and irreducible polynomial of odd degree. Let

f (x, t) = tn + f1(x)tn−1 + . . . + fn(x) ∈ C∞(RE)[t]

be any polynomial such that p(t) = tn + (f1(x)/I)tn−1 + . . . + (fn(x)/I). Then there exists a
smooth function r : U −→ R for some openU ⊆ RD and a finite setD ⊆ E such that r(x) is the
first root of f (x, t) ∈ R[t] (which exists sinceR is real closed). Then “r/I” is a root of p(t). □
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Proof ingredients Integrally ringed spaces

Definition (Definition 2 in [Sch90a])
A ringed space X = (X,OX) is an integrally ringed space if each stalk is an integral domain. If
X = (X,OX), Y = (Y , OY) are integrally ringed spaces and if f = (f , f #) : X −→ Y is a
morphism in the category of ringed spaces, then f is a morphism of integrally ringed spaces
when for all x ∈ X the homomorphism f #

X : OY ,f (x) −→ OX,x of stalks is a monomorphism.
Write IntRingSp for the resulting category.

Let A be a ring. Write Specinv(A) for Spec(A) equipped with the inverse spectral topology, so
that the sets V(a1, . . . , an) := {p ∈ Spec(A) | a1, . . . , an ∈ p} form a basis of quasi-compact
opens for the topology on Specinv(A).

Theorem (Satz 3 and Satz 4 in [Sch90a])
Let A be a ring.

1. LetO0(V(a1, . . . , an)) := A/
√

(a1, . . . , an) andO0(V(a1, . . . , an) ⊆ V(b1, . . . , bm)) be the
canonical surjection A/

√
(b1, . . . , bm) −↠ A/

√
(a1, . . . , an). ThenO0 is a presheaf on (the basis

of) Specinv(A).

2. LetO be the unique sheaf on Specinv(A) associated toO0. Then Specinv(A) = (Specinv(A),O) is
an integrally ringed space.

3. The presheafO0 is a sheaf if and only if sums of radical ideals of A are radical ideals. This condition holds,
for example, if A is a real closed ring (Section 3 in [Sch86]).
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Proof ingredients A universal property and its main application

Theorem (Satz 16 in [Sch90a])
Let A be a ring andρA : A −→ ρ(A) be its real closure (Chapter I in [Sch89]). Then the pair
(Specinv(ρ(A)), Specinv(ρA)) has the following universal property: for every X ∈ IntRingSpwith
real closed stalks and every IntRingSp-morphism f : X −→ Specinv(A) there exists a unique
IntRingSp-morphism f : X −→ Specinv(ρ(A)) such that Specinv(ρA) ◦ f = f .

Theorem (Satz 17 in [Sch90a])
Let X be an integrally ringed space with real closed stalks. Then A := Γ(X) is a real closed ring.

Sketch of proof
The identity map A −→ A induces a IntRingSp-morphism f : X −→ Specinv(A) (Satz 7 in
[Sch90b]), therefore by Satz 16 in [Sch90a] there exists a unique IntRingSp-morphism
f : X −→ Specinv(ρ(A)) such that Specinv(ρA) ◦ f = f . Applying the functor
Γ : IntRingSp −→ Ring yields a commutative diagram of rings and ring homomorphisms

Γ(Specinv(A)) Γ(Specinv(ρ(A))) = ρ(A)

Γ(X) = A

Γ(Specinv(ρA))

Γ(f )
Γ(f )

Γ(f ) is an isomorphism, therefore Γ(f ) is surjective. Since A is reduced, A is real closed. □
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Theproof

Proposition (P.P.)
(The underlying ring of) Any vonNeumann regularC∞-ring A is a real closed ring. In particular, the
support map (of the underlying ring) suppA : Sper(A) −→ Spec(A) is a homeomorphism.

Proof
Since A is von Neumann regular, Spec(A) = Specmax(A). Recall that if B is anyC∞-ring:
1. For every ring-theoretic ideal I ⊆ B, the ring B/I has a canonicalC∞-structure and the map
B −↠ B/I is aC∞-morphism (Proposition 1.2 in [MR91]).

2. p ∈ Spec(B) is aC∞-radical prime ideal (p. 329 in [MR86], and p. 2025 and Section 4 in
[BM23]) if and only if theC∞-ring B/p is aC∞-subring of aC∞-field (Proposition 2.5 in
[MR86]). The set Spec∞(B) of allC∞-radical prime ideals of B is a proconstructible subset of
Spec(B) (Section 1 in [MvQR87] and Section 4 in [BM23]).

It follows that
X := Spec(A) = Specmax(A) = Spec∞(A). (∗)

as topological spaces; see alsoTheorem 3.11 2) in [BM23]. LetOX be the Zariski sheaf on X. Then
(∗) and the fact that everyC∞-field is real closed field together imply that X = (X,OX) is an
integrally ringed space with real closed stalks. Classical commutative algebra yields A ∼= Γ(X)
as rings, therefore A is a real closed ring by Satz 17 in [Sch90a]. The statement about the support
map being a homeomorphism is true for any real closed ring (Theorem 3.10 in [Sch89, Chapter I]
andTheorem 12.4 (d) in [SM99]).
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Follow-up questions

Question: Are there any otherC∞-rings which are real closed?
Most likely the answer is yes. A possible first approach to this question is characterizing those
valuationC∞-rings which are real closed. Recall that if A is a localC∞-ring, then A is Henselian
with real closed residue field (Corollary 2.11 in [MR86]), therefore a sensible conjecture would be
that if V is a valuationC∞-ring, then

V is real closed ⇐⇒ the value group of (qf(V),V) is divisible.

This should follow from the Ax-Kochen-Ershov theorem for Henselian valued fields of
equicharacteristic 0.

Question: Does the Hahn power series construction R[[Γ ]] := R[[xΓ⩾0
]] (R a field, Γ a totally

ordered abelian group) yield examples of valuationC∞-rings? More concretely, if R = (R, Φ) is
aC∞-field, can a similar definition of theC∞-structure onR[[x]] be used to equip R[[Γ ]]with
aC∞-structureΦ∗? For example, if f ∈ C∞ is unary, and a =

∑∞
n=0 anxn ∈ R[[Γ ]], then

Φ∗(f )(a) :=

∞∑
n=0

(Φ(f (n))(a0)
n!

(a− a0)n ?
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