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Context and motivation The case for real closed rings I

Let
Can = U {f : R" — R | f is continuous and Z-semi-algebraic},
n€Ng

and if Ais any set, thenlet Oy := U,y {f : A" — A | f isa function}.

Definition (2.1in [Treo7])
Aring A is real closed if there exists a function @ : Cs, — O4 such that:
1. Ifn € Ngandf € Ccs, is n-ary, then @ (f) is n-ary.

2. Ifn € Nandf € C, is the projection R” — R onto the it"-coordinate, then @ (f) is the
projection A" — A onto the i-coordinate.

3. Ifme N,n € No,f € Cusaism-ary,and gy, ..., gm € Ccsq are n-ary, then

4. O(+R) = +a, O(R) = -a,and O (—Rr) = —4, P (0Rr) = 04,2and @ (1r) = 1.

If Ais areal closed ring, then the set @ (Ccsa) = { D@ (f) | f € Ccsa ) is areal closed structure
forA.

Aring is real closed in the sense above if and only if it is a real closed ring in the sense of Niels
Schwartz (this fact is implicit in [SM99], Chapters 7 and 12).




Context and motivation The case for real closed rings II

Theorem (2.12 (c) in [Treo7])

Let A be a real closed ring. Then A has a unique real closed structure, that is, there exists a unique function
Dy : Cosa — Oy satisfying all items 1 - 4 from the definition of the previous slide.

Proposition (2.16 in [Treo7])

LetF : A — B be aring homomorphism of real closed rings. Then F preserves the real closed structure,
thatis, foreveryn € Wo and every n-ary functionf € C.s, the equality

holds.

Question: Do the any of the above statements also hold for €*°-rings?

Partial answer: The second statement is false for C*°-rings as there exists a counterexample; this
is Remark 4.40 in [CR13]. I don't know if the first statement holds for €*°-rings.

The counterexample was constructed by Reichard in [Rei7s] to answer a similar question posed
by Malgrange (Remark 2.4 in [Mal66]) in the context of differentiable algebras. This
counterexample is also mentioned in the context of C*°-differentiable spaces, see the line above
Example 2.37 in [NGSdSo3].




The counterexample Choice of data

Fix the following notation:

e R{x} C RR[[x]] is the subring of convergent power series in the variable x over RR.

e C®(IR), is the ring of germs of smooth functions R — R ato.

e CY(R)o C C*®(IR), is the subring of germs of analytic functions R — R ato.

e T:C®(R)o — RI[[x]]is the Taylor series map at o, that s, if [f] is the germ at 0 of
f € C®(R), thenT([f]) := ¥ {2 @y,

n=o0 n!
Fact (Pages 18 and 31 in [MR91])
The rings R[[x]] and C* (R ), are C*°-rings (R[[x]], @) and (C*®° (R)o, @, ). In particular:
o If f: R — Risasmoothfunctionanda = Y ;°  ax" € R[[x]], then

—a)".

X £(n)
o, =y el
o If f: R — Risasmooth functionand [g] € C*(R)o, then

O, (f)(lg]) = [f ogl.

o T preserves the C™-structure, thatis, T isa C®-morphism T : (C®(R)o, @,) —» (Rl[[x]], @,).




The counterexample Reichard’s theorem

Theorem (Satz 2 in [Rei75])
There exists an R-algebra morphism F : R[[x]] — C*®(IRR)o such that:

1. Fisan R-algebra cross-section of T, thatis, T o F : R[[x]] — R[[x]] is the identity map.

2. Frestricts to the canonical R-algebra isomorphism Fo : R{x} = cw (R)o. In particular,
F(x) = [idr], whereidg is the identity map R — R.

Sketch of proof

Define M to be the set of pairs (4, f) such that:

e Aisan R-algebrawith R{x} C A C R[[x]].

e f:A— C®(R)oisan R-algebra morphism.

e f restricts to the canonical isomorphism Fy : R{x} = cw (R)o.

Define a partial order C on M by setting (4,f) C (B,g) LU C Band g = f. The set M is
non-empty since (R{x}, F5) € M, therefore the poset (M, C ) has a maximal element (4, F) by
Zorn's lemma. Assume for contradiction that A # R[[x]]. Choose b € R[[x]] \ A. Then there
exists an R-algebra morphism G : A[b] — C*(RR), which extends F, yielding a contradiction
to maximality of (A, F) in (M, C). O




The counterexample Reichard’s R-algebra morphism F is not a C*-morphism

Observation (cf. Remark 4.40 in [CR13])

The R-algebra morphism F : R[[x]] — C*®(R)o from Reichard’s theorem does not preserve the
C®-structure, that it, it is not a C*>°-morphism F : (R[[x]], ®;) — (C®(R)o, @,).

Proof

Letf : R —> IR be any smooth function which is flat at o (that is, such that f(") (0) = o for all
n € INo) and such that [f] # [0] in C*° (IR ). An example of such function is the one defined by

f(o) =oandf(x) := ra ifx # o.

Let idg be the identity map R — RR. On the one hand, F(x) = [idr] by item 2 in Reichard’s
theorem, therefore

O, () (F(x)) = ©,(f) (lidr]) = [f o idr] = [f].

On the other hand, @, (f) (x) = )2 (o) (x —o)" = osincef is flat at o, therefore

F(®y(f) (x)) = F(o) = [ol,

and thus
F(®1(f)(x)) # D2 (f)(F(x))
by choice of f. a




Follow-up questions

Question: Does every C*°-ring have a unique C*-structure?

Let C*°-RING be the category of C*°-rings with €*°-morphisms and IR-Alg be the category of
R-algebras with R-algebra morphisms. The previous counterexample implies that the forgetful
functor U : C*°-RING — R-Alg is not full.

However, there exist full subcategories 4 C C*°-RING such that the restriction of U'to ¢ is a
full functor. For example, one can take ¢ to be the full subcategory of C*°-RING whose objects
are either of the following:

e (C°° (M) where M is a smooth manifold (Theorem 2.8 and Corollary 3.7 in [MR91]).

e Formal algebras, that is, factor rings of formal power series with finitely many variables over
R (Proposition 3.20 in [MR91]).

e Weil algebras (Corollary 3.19 in [MR91]).
e Near-point determined C*°-rings (Definition 4.1 (b) in [MR91] and Proposition 8 in [Bor1s]).

Question: Is there a largest full subcategory " C C*°-RING such that the restriction of U to ¢’
is a full functor? If not, is there an intrinsic characterization of the categories %’ that satisfy this

property?




Proof ingredients C>-fields are real closed

Theorem (Theorem 2.10 in [MR86] and page 42 in [MR91])
(The underlying field of) Any C*°-field K is a real closed field.

Sketch of proof

The proof heavily relies on the representation of €*°-rings as quotients by ideals of filtered
colimits of @*-rings of the form C*® (R"). In particular, K = C* (IRF) /I as C*-rings for
some set E and some maximal ideal I C C*° (IRF), where

C®(RE) := @{cm(RD) | D C E finite }.

Maximality of I implies thatf /I > o &y Jg €l Vx € Z(g).f (x) > oisatotal order on

C*®(R¥) /I turning it into a totally ordered field. Smooth Tietze implies that that positive
elements in this total order are squares.

Letp(t) € K[t] be a monic and irreducible polynomial of odd degree. Let
flEt) ="+ )+ +filx) € (R[]

be any polynomial such thatp(t) = t" + (fi(x)/I)t" * + ... 4+ (fu(x)/I). Then there exists a
smooth functionr : U — R for some open U C RP and a ﬁmte set D Q E such thatr(x) is the
first root of f (x, t) € R[t] (which exists since R is real closed). Then “r/I” isarootof p(t). [




Proof ingredients Integrally ringed spaces

Definition (Definition 2 in [Schooa])

Aringed space X = (X, Ox) is an integrally ringed space if each stalk is an integral domain. If
X = (X,0x),Y = (Y, Oy) are integrally ringed spaces and if f = (f,f*) : X — Yisa
morphism in the category of ringed spaces, then f is a morphism of integrally ringed spaces
when for allx € X the homomorphism ff : Oy () — Ox of stalks is a monomorphism.
Write IntRingSp for the resulting category.

Let A be a ring. Write Spec'™ (A) for Spec(A) equipped with the inverse spectral topology, so
thatthesets V(ay,...,a,) := {p € Spec(4) | ay,...,a, € p}form abasis of quasi-compact
opens for the topology on Spec™ (A).

Theorem (Satz 3 and Satz 4 in [Schooa])
Let A be aring.

1. Let Oo(V(ay,...,ay)) :=A//(ay,...,ay) and O5(V(ay,...,ay) C V(by,...,by)) bethe

of) Spec™ (A).

2. Let O be the unique sheaf on Spec™ (A) associated to O . Then Spec™ (A) = (Spec™ (A), O) is
an integrally ringed space.

3. The presheaf O is a sheafif and only if sums of radical ideals of A ave radical ideals. This condition holds,
for example, if A is a real closed ring (Section 3 in [Sch86]).




Proof ingredients A universal property and its main application

Theorem (Satz 16 in [Sch9oa])

LetAbearingand pa : A — p(A) beitsreal closure (Chapter I in [Sch89]). Then the pair
(Spec™ (p(A)), Spec™ (p,)) has the following universal property: for every X € IntRingSp with
real closed stalks and every IntRingSp-morphismf : X — Specin" (A) there exists a unique
IntRingSp-morphism f : X — Spec™ (p (A)) such that Spec™ (p,) o f = f.

Theorem (Satz 17 in [Sch9oa])
Let X be an integrally ringed space with real closed stalks. Then A := T"(X) is a real closed ring.

Sketch of proof

The identity map A — A induces a IntRingSp-morphism f : X — Spec™ (A) (Satz 7 in
[Schgob]), therefore by Satz 16 in [Schgoa] there exists a unique IntRingSp-morphism
f:X — Spec™ (p(A)) such that Spec™ (p4) o f = f. Applying the functor

I" : IntRingSp — Ring yields a commutative diagram of rings and ring homomorphisms

-, Fx) =4
/ Tre

I'(Spec™(4)) —————— T'(Spec™(p(4))) = p(4)
I"(Spec™ (p4))

I'(f) is an isomorphism, therefore " (f) is surjective. Since A is reduced, A is real closed. [




The proof
Proposition (P.P.)

(The underlying ring of) Any von Neumann regular C°°-ring Ais a veal closed ring. In particular, the
support map (of the underlying ring) supp, : Sper(A) —> Spec(A) is a homeomorphism.

Proof
Since A is von Neumann regular, Spec(A) = Spec™®(A). Recall that if B is any C*-ring:

1. For every ring-theoreticideal I C B, the ring B/I has a canonical €*°-structure and the map
B — B/Iisa C*-morphism (Proposition 1.2 in [MR91]).

2. p € Spec(B) isa C*°-radical prime ideal (p. 329 in [MR86], and p. 2025 and Section 4 in
[BM23)) if and only if the @*°-ring B/p is a C*°-subring of a C*-field (Proposition 2.5 in
[MR86]). The set Spec™ (B) of all *°-radical prime ideals of B is a proconstructible subset of
Spec(B) (Section 1in [MvQR87] and Section 4 in [BM23]).

It follows that
X := Spec(A) = Spec™™(A) = Spec*™(A). (%)

as topological spaces; see also Theorem 3.11 2) in [BM23]. Let Ox be the Zariski sheaf on X. Then
() and the fact that every C*°-field is real closed field together imply that X = (X, Ox) isan
integrally ringed space with real closed stalks. Classical commutative algebra yields A = I'(X)
as rings, therefore A is a real closed ring by Satz 17 in [Sch9oa]. The statement about the support
map being a homeomorphism is true for any real closed ring (Theorem 3.10 in [Sch89, Chapter I]
and Theorem 12.4 (d) in [SM99]). O




Follow-up questions

Question: Are there any other C*°-rings which are real closed?

Most likely the answer is yes. A possible first approach to this question is characterizing those
valuation C*°-rings which are real closed. Recall thatif A is a local C*°-ring, then A is Henselian
with real closed residue field (Corollary 2.11 in [MR86]), therefore a sensible conjecture would be
thatif V is a valuation C*°-ring, then

Visreal closed <> the value group of (qf(V), V) is divisible.

This should follow from the Ax-Kochen-Ershov theorem for Henselian valued fields of
equicharacteristic 0.

Question: Does the Hahn power series construction R[[I']] := R[[xr>o 11 (Rafield, T a totally
ordered abelian group) yield examples of valuation C*°-rings? More concretely, if R = (R, @) is
a C*-field, can a similar definition of the €*°-structure on R[[x]] be used to equip R[[T"]] with
a @ -structure @ *? For example, if f € C* isunary,anda = Y °  a,x" € R[[I']], then

o0 (n)
o () () =y P gy
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