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Basic notions

Fix the following notation and conventions:

• If A is any ring, then A× is its multiplicative group of units.

• If A is a domain, then qf(A) is its quotient field, i.e., qf(A) is the field obtained as the
localization of A by the multiplicate subset A \ {0} in the category of rings. Regard A as a
subring of qf(A) in the canonical way.

• If A ⊆ K is a subring of a field K, then regard qf(A) as a subfield of K in the canonical way by
the universal property of qf(A). In particular, A ⊆ qf(A) ⊆ K.

If A ⊆ K is a subring of a field K, then A is a valuation ring of K if for all b ∈ K×, either b ∈ A or
b−1 ∈ A. An arbitrary ring A is a valuation ring if A is a domain and a valuation ring of qf(A).
Note that if A ⊆ K is a valuation ring of a field K, then qf(A) = K: if b ∈ K×, then either b ∈ A,
in which case b ∈ qf(A), or b−1 ∈ A, in which case b ∈ qf(A) also follows.

If A ⊆ K is a valuation ring of a field K, then the pair (K, A) is called a valued field. For a valued
field (K, A), the quotient of multiplicative groups K×/A× is called the value group of (K, A) and it
has the structure of a totally ordered abelian group by setting b/A× ⩽ c/A× if and only if
cb−1 ∈ A. Valuation rings are local rings. The residue field of a valued field (K, A) is A/mA, where
mA is the unique maximal ideal of A. A standard reference for valued fields is [EP05].
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TheAx-Kochen-Ershov theorem

A valued field (K, A) isHenselian if Hensel’s lemma holds for (A,mA); for equivalent
characterizations of Henselian valued fields see [EP05,Theorem 4.1.3]. A valued field (K, A) is
said to be of equicharacteristic 0 if both K and A/mA are fields of characteristic 0.

Theorem (Ax-Kochen-Ershov theorem)

Let (K, A) and (L,B) beHenselian valued fields of equicharacteristic 0. The following statements are
equivalent:
1. (K,A) ≡ (L,B) in the languageL ring ∪ {P}, whereL ring := {+, −, ·, 0, 1} and P is a unary
predicate interpreted as the valuation ring of the valued field.

2. A/mA ≡ B/mB in the languageL ring and K×/A× ≡ L×/B× in the language {+, −, 0, ⩽} of
ordered groups.

Proof
Folklore; see for instance [vdD14,Theorem 5.1]. Note that this theorem is usually phrased for
valued fields regarded as three-sorted structures (e.g. [vdD14,Theorem 5.11], [KC90,Theorem
5.4.12], or [d’E23,Theorem 1.15]). The statement of this theorem follows from the three-sorted
version due to the fact that there exists a uniform bi-interpretation without parameters from the
theory of valued fields in the languageL ring ∪ {P} to the theory of valued fields in the
three-sorted language, therefore (K, A) ≡ (L,B) if and only if their corresponding three-sorted
structures are elementary equivalent in the three-sorted language.
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Hahn series

Definition

Let k be a field and Γ be a totally ordered abelian group. Define k((Γ)) := k((xΓ )) to be the set
of formal series a =

∑
aγxγ :=

∑
γ∈Γ aγxγ such that supp(a) := {γ ∈ Γ | aγ ̸= 0} is a

well-ordered subset of Γ .

Theorem (Exercise 3.5.6 and Remark 4.1.8 in [EP05])

Let k be a field and Γ be a totally ordered abelian group.
1. The set k((Γ)) endowed with the operations of pointwise addition and Cauchy product of formal series∑

aγxγ +
∑

bγxγ :=
∑

(aγ + bγ)xγ

and (∑
aγxγ

)(∑
bγxγ

)
:=

∑
γ∈Γ

∑
δ+ϵ=γ

(aδbϵ)xγ,

respectively, is a field calledHahn field.

2. The set k[[Γ ]] := k((xΓ⩾0
)) ⊆ k((Γ)) is a valuation ring of k((Γ)).

3. The value group of (k((Γ)), k[[Γ ]]) is Γ and its residue field is k.

4. The valued field (k((Γ)), k[[Γ ]]) is Henselian.
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Equivalent characterizations of real closed valuation rings
Definition
A ring is a real closed valuation ring if it is both a valuation ring and a real closed ring.

Theorem (Theorem 3.1.4 in [Pie24])

Let A be a ring. The following are equivalent:
1. A is a real closed valuation ring.

2. A is a domain, qf(A) is a real closed field, and A is convex in qf(A).

3. A is a valuation ring, and both qf(A) and A/mA are real closed fields.

4. A is a totally ordered domain which satisfies the intermediate value property for polynomials in one
variable.

5. A is a totally ordered domain which satisfies the following conditions:
a) For all a, b ∈ A, if 0 < a < b, then there exists c ∈ A such that bc = a.
b) Every positive element has a square root.
c) Everymonic polynomial of odd degree has a root.

6. A is a local real closed SV-ring of rank 1.

Proposition (Proposition 2.1.7 (a) and Proposition 2.2.4 in [KS22])
Let K be a totally ordered field. Then any convex subring of K is a valuation ring of K. In particular, if B ⊆ K
is any subring, then the convex hull of B in K is a convex valuation ring of K.
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Real closed valued fields

Definition
A real closed valued field is a valued field (K, A)where A is a real closed valuation ring (equivalently,
K is a real closed field and A is convex in K).

Example
Let k be a real closed field and Γ be a divisible totally ordered abelian group. Then
(k((Γ)), k[[Γ ]]) is a real closed valued field. The converse also holds; see [AvdDvdH17, Example
in p. 177].

Corollary
Let (K, A) be aHenselian valued field of equicharacteristic 0. If the residue field k := A/mA is a real closed
field and the value group Γ := K×/A× is divisible, then K is a real closed field and A is a convex in K.

Sketch of proof
Since (k((Γ)), k[[Γ ]]) is a Henselian valued field, the Ax-Kochen-Ershov theorem implies that
(K, A) ≡ (k((Γ)), k[[Γ ]]) in the language ofL ring ∪ {P}. Since the theory of real closed
valued fields is axiomatizable in the languageL ring ∪ {P} and (k((Γ)), k[[Γ ]]) is a real closed
valued field, the statement follows. □
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Two notions of valuation rings in the category of C∞-rings
Fix the following notation and conventions:

• AC∞-reducedC∞-domain is aC∞-ringC∞-isomorphic to aC∞-subring of aC∞-field.
• If A is aC∞-reducedC∞-domain, then k(A) is its quotient field in the category ofC∞-rings,
i.e., k(A) is theC∞-field obtained as the localization of A by the multiplicative subset A \ {0}
in the category ofC∞-rings. Regard A as aC∞-subring of k(A) in the canonical way, and in
particular A ⊆ qf(A) ⊆ k(A) by the universal property of qf(A) in the category of rings.

Definition
Let A be aC∞-ring.
1. A is a valuationC∞-ring if it(s underlying ring) is a valuation ring.
2. A is aC∞-valuationC∞-ring if A is aC∞-reducedC∞-ring and (its underlying ring is) a

valuation ring of k(A).

Remark
Let A be aC∞-ring.
1. If A is a valuationC∞-ring, then in particular A is aC∞-domain, but it might not be

C∞-reduced. For example,R[[x]] (= R[[Z]]) is a valuationC∞-ring which is not
C∞-reduced (see example 1 in the proof of [BK18, Proposition 1]).

2. If A is aC∞-valuationC∞-ring, then A is a valuationC∞-ring.
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A characterization of real closed valuation C∞-rings
Lemma

Let A be a valuationC∞-ring. Then (qf(A), A) is a Henselian valued field of equicharacteristic 0with real
closed residue field.

Proof
Since A is aC∞-ring, A is anR-algebra, therefore qf(A) has characteristic 0. Since A is a local
ring, it is Henselian by [MR86,Theorem 3.22] and its residue field is real closed because it is a
C∞-field ([MR91, Proposition 1.2]) andC∞-fields are real closed ([MR86,Theorem 2.10]).

Theorem (P.P.)
Let A be a valuationC∞-ring. Then A is a real closed ring if and only if its value group Γ := qf(A)×/A×
is divisible.

Sketch of proof
If A is a real closed ring, then qf(A) is a real closed field. In particular, since monic polynomials
of odd degree have roots in qf(A), it follows that the multiplicative group K>0 is divisible. Since
the restriction of the surjective group homomorphism qf×(A) −↠ Γ to K>0 is surjective, it
follows that Γ is divisible. Suppose now that Γ is divisible. Then (qf(A), A) is a Henselian valued
field of equicharacteristic 0 with real closed residue field and divisible value group, therefore by a
previous corollary qf(A) is real closed and A is convex in qf(A), fromwhich it follows that A is a
real closed (valuation) ring. □
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Constructing real closed valuation C∞-rings
Proposition (P.P.)

LetL ∞ := {f | f ∈ C∞} be the language ofC∞-rings. Let (K,ΦK) be a proper elementary extension
of theC∞-field (R, ΦR) in the languageL ∞. Then the convex hull ofR in K,

c.h.K(R) := {a ∈ K | ∃r ∈ R⩾0 such that − r ⩽ a ⩽ r},

is a real closedC∞-valuationC∞-ring which is not a field.
Proof
Since K is a real closed field and A := c.h.K(R) is a convex subring of K, A is a real closed
valuation ring. Since K a proper elementary extension of the real closed fieldR, K contains
elements which are not bounded byR, therefore A ̸= K.
To show that A is aC∞-ring it suffices to show thatΦK(f )(a) ∈ A for every n-ary f ∈ C∞
(n ∈ N0) and every a ∈ An, as in this case, settingΦA(f ) := ΦK(f )↾An yields aC∞-structure
on A. In this way, A becomes aC∞-subring of theC∞-field K.
Pick and n-ary function f ∈ C∞ (n ∈ N0) and a := (a1, . . . , an) ∈ An. Since a ∈ An, there exist
r1, . . . , rn ∈ R⩾0 such that−ri ⩽ ai ⩽ ri for all i ∈ {1, . . . , n}. Because f : Rn −→ R is
continuous, the image of the closed and bounded box [−r1, r1]× . . . × [−rn, rn] ⊆ Rn under f
is bounded.
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Constructing real closed valuation C∞-rings
Proof (continued)
In other words, there exists s ∈ R⩾0 such that

∀x1 . . . xn ∈ R

[( n∧∧
i=1

−ri ⩽ xi ⩽ ri

)
→ −s ⩽ f (x1, . . . , xn) ⩽ s

]
.

Recall thatL ∞ contains constants for all elements inR. In particular, sinceR is a real closed
field, the above statement aboutR and f can be expressed by theL ∞-sentenceφ

∀x1 . . . xn

[
∃y1 . . . yn∃z1 . . . zn

( n∧∧
i=1

xi + ri = y2i ∧∧ ri − xi = z2i

)
→

∃v∃w(f (x1, . . . , xn) + s = v2 ∧∧ s− f (x1, . . . , xn) = w2)

]
.

Since (R, ΦR) |= φ and (R, ΦR) ≺ (K, ΦK), it follows that (K, ΦK) |= φ. Since K is a real
closed field and a ∈ An ⊆ Kn satisfies−ri ⩽ ai ⩽ ri for all i ∈ {1, . . . , n}, it follows that
(K, ΦK) |= −s ⩽ ΦK(f )(a) ⩽ s, thereforeΦK(f )(a) ∈ A, as required.
In particular, (A, ΦA) is aC∞-subring of theC∞-field (K, ΦK), therefore it is aC∞-reduced
C∞-ring. Since A is a valuation ring of K, it follows that K = qf(A), therefore qf(A) is a
C∞-field and thus qf(A) = K = k(A) by the universal property of the quotient field k(A) of A in
the category ifC∞-rings. Therefore A is aC∞-valuationC∞-ring, concluding the proof. □
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