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Basic notions

Fix the following notation and conventions:
e IfAisanyring, then A* isits multiplicative group of units.

e IfAisadomain, then qf(A) isits quotient field, i.e., gf(A) is the field obtained as the
localization of A by the multiplicate subset A \ {0} in the category of rings. Regard A as a
subring of qf(A) in the canonical way.

e IfA C Kisasubring of a field K, then regard qf(A) as a subfield of K in the canonical way by
the universal property of qf(A). In particular, A C qf(4) C K.

IfA C Kisasubring of a field K, then A is a valuation ring of K if for all b € K*, either b € A or
b~' € A. An arbitrary ring A is a valuation ring if A is a domain and a valuation ring of qf(A).
Note thatif A C Kis avaluation ring of a field K, then qf(A) = K:if b € K*, then eitherb € 4,
in which case b € qf(A),orb™! € 4, in which case b € qf(A) also follows.

IfA C Kis avaluation ring of a field K, then the pair (K, A) is called a valued field. For a valued
field (K,A), the quotient of multiplicative groups K* /A* is called the value group of (K, A) and it
has the structure of a totally ordered abelian group by setting b/A* < ¢/A* if and only if
cb™' € A. Valuation rings are local rings. The residue field of a valued field (K, A) is A/my, where
my is the unique maximal ideal of A. A standard reference for valued fields is [EPo5].




The Ax-Kochen-Ershov theorem

Avalued field (K, A) is Henselian if Hensel’s lemma holds for (A, my ); for equivalent
characterizations of Henselian valued fields see [EPo5, Theorem 4.1.3]. A valued field (K,A) is
said to be of equicharacteristic o if both K and A /my are fields of characteristic o.

Theorem (Ax-Kochen-Ershov theorem)

Let (K,A) and (L, B) be Henselian valued fields of equicharacteristic 0. The following statements are

equivalent:

1. (K,A) = (L, B) inthelanguage £*"8 U {P}, where #"™8 := {+, —, ., 0,1} and Pis a unary
predicate interpreted as the valuation ring of the valued field.

2. A/my = B/wmgpinthelanguage "8 and KX /AX = L* /B> inthe language {+, —, 0, <} of
ordered groups.

Proof

Folklore; see for instance [vdD14, Theorem 5.1]. Note that this theorem is usually phrased for
valued fields regarded as three-sorted structures (e.g. [vdD14, Theorem 5.11], [KC90, Theorem
5.4.12], or [d’E23, Theorem 1.15]). The statement of this theorem follows from the three-sorted
version due to the fact that there exists a uniform bi-interpretation without parameters from the
theory of valued fields in the language .#*8 U {P} to the theory of valued fields in the
three-sorted language, therefore (K,A) = (L, B) if and only if their corresponding three-sorted
structures are elementary equivalent in the three-sorted language. O




Hahn series
Definition
Let k be a field and T" be a totally ordered abelian group. Define k((T") k((x")) to be the set

)=
of formal seriesa = }_ ayxY := } | -y ayx" suchthatsupp(a) :=={y € ' | a, #o0}isa
well-ordered subset of T".

Theorem (Exercise 3.5.6 and Remark 4.1.8 in [EPO5])

Let k be a field and T be a totally ordered abelian group.
1. Thesetk((T")) endowed with the operations of pointwise addition and Cauchy product of formal series

Zayxy + ZbyxY o= Z(ay + by Jx¥
(Z ayxy> (Z byxy> = Z Z (aghe)xY

YET d+e=y

and

respectively, is a field called Hahn field.
2. Thesetk[[T']] := k((xr>o )) C k((T")) isavaluation ring of R((T")).
3. Thevalue group of (k((T")), k[[T']]) is T and its residue field is k.
4. Thevalued field (k((T")), k[[T"]]) is Henselian.




Equivalent characterizations of real closed valuation rings
Definition

Aring is a real closed valuation ring if it is both a valuation ring and a real closed ring.

Theorem (Theorem 3.1.4 in [Pie24])

Let A be a ring. The following are equivalent:

i
2.

3.

Ais areal closed valuation ring.
Aisadomain, qf(A) is a real closed field, and A is convexin qf(A).
Ais avaluation ring, and both qf (A) and A/ wy are real closed fields.

. Aisatotally ordered domain which satisfies the intermediate value property for polynomials in one

variable.

. Aisatotally ordered domain which satisfies the following conditions:

a) Foralla,b € A,ifo < a < b, thenthereexistsc € Asuch thatbc = a.
b) Every positive element has a square root.
¢) Every monic polynomial of odd degree has a root.

. Aisalocal real closed SV-ring of rank 1.

Proposition (Proposition 2.1.7 (a) and Proposition 2.2.4 in [KS22])

Let K be a totally ordered field. Then any convex subring of K is a valuation ring of K. In particular, if B C K
is any subring, then the convex hull of B in K is a convex valuation ring of K.




Real closed valued fields

Definition

A real closed valued field is a valued field (K, A) where A is a real closed valuation ring (equivalently,
Kis areal closed field and A is convex in K).

Example

Let k be a real closed field and I" be a divisible totally ordered abelian group. Then
(R((T)),k[[T]]) is a real closed valued field. The converse also holds; see [AvdDvdH17, Example
in p. 177].

Corollary

Let (K, A) be a Henselian valued field of equicharacteristic 0. Ifthe residue field k := A/ is a real closed
field and the value group T := K* /A is divisible, then K is a real closed field and A is a convex in K.

Sketch of proof

Since (k((T")),k[[T']]) is a Henselian valued field, the Ax-Kochen-Ershov theorem implies that
(K,A) = (k((T)),R[[T']]) in the language of .Z"™¢ U {P}. Since the theory of real closed

valued fields is axiomatizable in the language .#""¢ U {P} and (k((T")),k[[T"]]) is a real closed
valued field, the statement follows. O




Two notions of valuation rings in the category of C*-rings

Fix the following notation and conventions:

o A C®-reduced C*°-domain is a C*°-ring C*-isomorphic to a C*°-subring of a C*°-field.

e IfAisa C*®-reduced C*°-domain, then k(A) is its quotient field in the category of €*-rings,
i.e., k(A) is the C*-field obtained as the localization of A by the multiplicative subset A \ {o}
in the category of C*°-rings. Regard A as a C*°-subring of k(A) in the canonical way, and in
particular A C qf(A) C k(A) by the universal property of qf (A) in the category of rings.

Definition

Let Abe a C*-ring.

1. Aisavaluation C*-ring if it(s underlying ring) is a valuation ring.

2. Aisa C®-valuation C*®-ring if A is a C*-reduced C*°-ring and (its underlying ring is) a
valuation ring of k(A).

Remark
Let A be a C*-ring.

1. IfAisavaluation C*-ring, then in particular A is a €*°-domain, but it might not be
C*-reduced. For example, R[[x]] (= R[[Z]]) is a valuation €*°-ring which is not
C>-reduced (see example 1in the proof of [BK18, Proposition 1]).

2. IfAisa €*-valuation €*°-ring, then A is a valuation C*°-ring.




A characterization of real closed valuation C*°-rings

Lemma

Let A be a valuation C*-ring. Then (qf(A),A) is a Henselian valued field of equicharacteristic o with real
closed residue field.

Proof

Since Aisa C*-ring, A is an R-algebra, therefore qf(A) has characteristic o. Since A is a local
ring, it is Henselian by [MR86, Theorem 3.22] and its residue field is real closed because it is a
©>-field (IMR91, Proposition 1.2]) and C*°-fields are real closed ((MR86, Theorem 2.10]). O

Theorem (P.P.)

Let A be a valuation C*°-ring. Then A is a real closed ving if and only ifits value group " := qf(A) * /A%
is divisible.

Sketch of proof

If Ais areal closed ring, then qf(A) is a real closed field. In particular, since monic polynomials
of odd degree have roots in qf(A), it follows that the multiplicative group K~° is divisible. Since
the restriction of the surjective group homomorphism qf* (A) — T to K~° is surjective, it

follows that I" is divisible. Suppose now that I' is divisible. Then (qf(A), A) is a Henselian valued
field of equicharacteristic o with real closed residue field and divisible value group, therefore by a
previous corollary qf(A) is real closed and A is convex in qf(A), from which it follows that A is a
real closed (valuation) ring. O




Constructing real closed valuation C*-rings

Proposition (P.P.)

Let £ :={f | f € C*} bethelanguage of C*°-rings. Let (K, @) be a proper elementary extension
ofthe C*°-field (R, D ) in the language -2°°. Then the convex hull of R in K,

chx(R):={a€K|3IreR> suchthat —r < a<rh,

is a real closed C*°-valuation C*°-ring which is not a field.

Proof

Since K is a real closed field and A := c.h.x (R) is a convex subring of K, A is a real closed
valuation ring. Since K a proper elementary extension of the real closed field R, K contains
elements which are not bounded by R, therefore A # K.

To show that A is a €*°-ring it suffices to show that @ (f) (a) € A for every n-aryf € C>

(n € INo) and every @ € A", as in this case, setting @4 (f) := P (f)an yields a C*-structure
onA. In this way, A becomes a C*°-subring of the C*°-field K.

Pick and n-ary functionf € C* (n € Ny)anda := (ay,...,a,) € A". Sincea € A", there exist
Ripooos rn € RZ° suchthat —r; < a; < r;foralli € {1,...,n}. Becausef : R* — Ris
continuous, the image of the closed and bounded box [—r, 7] X ... X [—7,, 1] € R” under f
is bounded.




Constructing real closed valuation C*-rings

Proof (continued)

In other words, there exists s € R=>° such that

n
Vxl...xn€R|:</X\—ri<xi<Vi>H—séf(xl ..... xp) <5 .

i=1

Recall that £ contains constants for all elements in R.. In particular, since R is a real closed
field, the above statement about R and f can be expressed by the £ *-sentence ¢

n
VX ... X {Hylu.y,,ﬂzlmzn (/X\x, +r=yr ANr—x zf) —

i=1

FvIw(f (o, .. x0) +5 =V AN s—flx,..., %) —wz)}

Since (R, ®R) |= @ and (R, PRr) < (K, D), it follows that (K, D) |= . Since K is a real
closed fieldand a € A" C K" satisfies —1; < a; < r;foralli € {1,...,n}, it follows that

(K, @g) = —s < Ok(f) (@) < s, therefore Dk (f)(a) € A, as required.

In particular, (A, @4) is a €*°-subring of the C*°-field (K, @), therefore it is a €*°-reduced
C*-ring. Since A is a valuation ring of K, it follows that K = qf(A), therefore qf(4) isa
C*-field and thus qf (A) = K = k(A) by the universal property of the quotient field k(A) of A in
the category if @*°-rings. Therefore A is a C*°-valuation €*-ring, concluding the proof. [
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